., Ned-280g, R T A
L / (c/ . . TMX-55051

S EFFECT or COMPRESSIBII.ITY L

S ROTATION AND MAGNETIC FlEtD

o ~ ON THE DRAG ON A SPHERE
.| OSCILLATING IN A CONDUCTING

S s vnscous MEDIUM L

OTS PRICE : o HAY 19"“ -

(EROX $ ”é/l’éﬁdz ‘

MICROFILM  $

l - . ¢
. o N . Lot

- Nﬁ*" A 'f —_ GODDARD SPACE FLIGHT cmm ——
| - GREENBELT, MARYLAND




Effect of Compressibility, Rotation and Magnetic Field
on the Drag on a Sphere Oscillating in a Conducting,
Viscous Medium

tM. P. Singh
Theoretical Division
NASA-Goddard Space Flight Center
Greenbelt, Maryland

I. Introduction

The role of rotation and magnetic fields in cosmical fluid dynamics
is well known. Recently, some attention has been given by several
authors [1-7] on the interaction of Coriolis forces and Loremtz forces

on flow phenomena.

It is‘generally accepted [1,2] that hydromagnetic flow in the
earth's liquid core is somehow responsible for the main geomagnetic
field, and therefore a theory of the dynamics of core motions is
required in order to understand a plausible theory of the earth's magnetic
field. It has been suggested that the near coincidence between the
geographic and geomagnetic poles is the result of the strong influence

of Coriolis forces, due to the earth's rotation, on motions in the core.

So much of meteorology depends ultimately upon the dynamics of
a revolving fluid. The large-scale and moderate motions of the atmosphere

are greatly affected by the rotation of the earth. Kelvin is said

tDr. Singh is a National Academy of Sciences - National Research Council
Postdoctoral Resident Research Associate
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to have pointed out [8] that rotation confers on a fluid certain
properties resembling those of an elastic solid, and a rotating

fluid can transmit waves. 1In the case of an infinite liquid, rotating
as a rigid body about an axis, the amount of energy possessed by the
liquid is infinite and it is of great interest to know how small

disturbances propagate in such a liquid.

To understand some of these phenomena, it will be interesting
to study the flow of a rotating fluid around elementary bodies.
We consider here small oscillations of a sphere in a compressible,
viscous, electrically conducting and rotating medium in the presence
of a uniform magnetic field. In addition to the above mentioned
interests, this problem may have some applications in connection with

the transmission of sound by fog [see 9, p. 659].

The classical problem of the oscillation of a sphere in a viscous
fluid was first considered by Stokes [9, p. 643]. The drag force

experienced by the sphere is (in dimensionless form)¥*

> . (1)

X, = 6mu (’ﬁ @“)‘2 %%s(%+

Bl

It is the purpose of the present investigation to determine the

effects of the magnetic field, compressibility, coriolis forces and their

*The dimensionless quantities and parameters in (1) are explained
in section IT.
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mutual interaction on the drag and other physical variables. Because

of the motion of the fluid in the magnetic field, an associated electrical
field is produced which, according to Ohm's law sets up electrical currents
in the fluid if the latter is a conductor. The interaction of these
currents with the magnetic field then produces a body force which must

be included in the Navier-Stokes equations for the motion of the fluid.
The effect of this body force is to inhibit the motion of the fluid

across the lines of force. The viscous effect gives rise to viscous
dissipative waves, the magnetic effect is responsible for Alfvén waves
while the compressibility and rotation produce sound and the so-called
Taylor waves respectively. Their mutual interaction will make the
situation even more complicated. In the next section, we make several

assumptions to make the problem mathematically more amenable.
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IT. Fundamental Equations and Formulation of the Problem

Iet the sphere oscillate along the axis of the rotating fluid
which is taken to be the x-axis. The origin is at the mean position of
the center of the sphere. ILet the uniform magnetic field be Ho_i .

The equations of motion of a compressible, viscous, unbounded fluid

rotating with a constant angular velocity Q_i_, referred to a rotating

frame of reference are (in m.k.s. units)
dv
pd€+299X_\£+p9x(_@x£) = -Vptpcurl HXH +

(2)

+p\)V2X+p—3\-)Vdj_VX

s

where p is the density, v the velocity of the fluid, H is total magnetic
field, p is the pressure, r is the radial coordinate: e = y2 + 22,
V the kinematic viscosity (assumed constant) and ¢ the magnetic

permeability (assumed constant ).

The equation of continuity is

div(pg)+%-% = 0 . (3)

The physical equation (the conduction of heat is neglected) is

o
fe]
o

z o8
P

b4

Lol I
|

ol
ct+
ct



(where 7 denotes the ratio of two specific heats) which can be

written as [9, p. 654]

O (@]
p = p +p s, (L)

where ¢ is the velocity of sound in the absence of viscosity, po, po

represent pressure and density in the undisturbed state and s denotes

the condensation

p = p% (1+s) . (5)

Maxwell's equations with the usual notation for electromagnetic

quantities are

(i) curl E = J, (ii) div H = O,

=
o~

(iii) curl E = - p %—— (iv) div E = 0,

(v) J=olE+pyvxH,

where the electrical conductivity 0 is treated as constant.

From (i), (iii) and (v) we obtain

(6%
e

= L e
-curl (y xE) = ;75 VPE . (1)

Q/
o+
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As in the classical problem, the convective terms in (2) will henceforth

be neglected. This is justified if

R, = alvliy <1, ®)

where Ve is the velocity of the sphere and a is its radius.

Further linearization of (2) and (3) is possible by means of (5)

which yields

d
po S—% + 2 po QXv+axX @Xr)f= -Vp+ypcurl HX H..-
50 (9)
+p° vvR v+ 3 YV aiv v
and
. Qs
div v + et o . (10)

These equations will be now reduced to a dimensionless form by referring
the length to a, the radius of the sphere, the velocity to ak (A/am

is the frequency of the oscillation), the time to l/k, the magnetic
field to Ho, the electric field to pakHo s, the current density

J to H7/a and the pressure to p° a2 A\2. The equations (6), (7) then

become



(1) curl H = J, (ii) div H = O,
(i1i) curl E = - %?, (iv) div E = O,
(v) curl H = R [E + v X HI
and
r ol b
v2 = i —_— - !
H n | 3% curl(x_rXE)_j
where
Rm (Magnetic Reynolds number) = a® A Lo

In addition, we introduce the following parameters:

R, (Reynolds number)* = a% A/v

*Tt should be noted that we have used al as velocity in the
definition of the Reynolds number. There still is another important
dimensionless parameter ®/a, where o is the amplitude of the
oscillatory motion of the sphere. It 1is assumed that this quantity
is small compared to unity.

ik

The velocity of sphere is vg i = a ) et t i, or in dimensionless
form, ug i = afa elt i.

The Reynolds number for the flow might also have been defined
as

R, = a« AV (=R, a/a).
It is necessary that

R <<1 ,

whereas the requirement for Re is less severe.

(11)

(12)

(13)

(1ha)
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. o ol s (14p)
B (magnetic pressure number) = a2

the ratio of the magnetic pressure to dynamic pressure, and

Y (Lhe)

the inverse of the so-called Rossby number Ro = X/QQ) = 1/5. In terms

of these parameters, equations (9) and (10) reduce to

o/
| <

Beurl HX H + L vz X—(cz + 31§ } Vs (15)

e

+
o
(I3
>
I<
f

&

and

olo

+lw
—_
5
p

divv = -

where velocity of sound ¢ is now in non-dimensional form referred to

ak , and if we assume that
R, > 1 , (17)

so as to neglect second and higher powers of 6, the centrifugal force

in (9) being of 0 (8%) is dropped* in (15).

*Notice that for large values of radial distance, our neglecting
centrifugal force may not be justified even though 82 is negligible.
In the Incompressible case, it presents no difficulty since it can be
absorbed with pressure term. However, in Compressible case, this cannot
be done. But since we are primarily interested in the effects of
Coriolis forces on the motion, following the standard procedure in such
cases (see for example Hide and Roberts 1960 [2] and Talwar 1964 [5]),

centrifugal force may be ignored.
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The boundary conditions on v are Vv = u, 1 on the surface of the
sphere and is zero at infinity. If the conductivity O' of the sphere¥
is comparable to the conductivity ¢ of the fluid, we require that
H should be continuous across the surface of the sphere, while at infinity,

H = 1,%x

We next make two important assumptions:

(1) The magnetic Reynolds number Rm is a small parameter.
We can then find a perturbation solution for small Rm' This is a
valid assumption in most practical problems and this technique has been
adopted in several discussions (see for example, Ludford [10] and

Tamada [11]).

(2) The magnetic pressure is comparable to dynamic pressure,

i.e. we assume B = 0O(1).

We assume an expansion in powers of Rm:

= + + oee-
v Yo TRy Ya
H = H +R H+---
(18)
E = E +R Ey + ---
E E i Z
S =

s +R s;t ---
o) m

*The discussion will be valid even if the sphere is an insulator. We
assume that the permeabilities of the sphere and the fluid are equal.

**¥These conditions imply that the tangential components of electric
field will be continuous across the sphere and that E = O at infinity.
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and obtain a set of equations fram (11), (12), (15) and (16) with
appropriate boundary conditions. It should be noted that some of the
complications which arise from boundary conditions in magneto-gas-

dynamics are conveniently absent in this problem.
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IIT. Solution of the Resulting Equations

Zeroth Order Equations

(1) curl H, =0, divH = 0, that is the magnetic field to
this order is independent of the fluid velocity. The same equations
hold inside the sphere and the boundary conditions are that go =1 at
infinity and it is continuocus across the surface of the sphere. The

solution is, therefore,

=
~
|_.J
\O
p—

(ii) The electric field E_ satisfies curl E_ =0, divE_ =0,
both in the fluid and the sphere. The continuity of the tangential
electric field on the surface of the sphere and vanishing of Eo at

infinity implies

(iii) The zeroth order flow fields and pressure fields

are unaffected by the magnetic field and are given by*

(V2 + n?) = - i(—g—kz-hz) v § R v_ X i (21)
To k o e o 2

. o 1
*The boundary condition v = u 1=+ e1t i on the surface of the

sphere and the linearity of the system of differential equations imply
that the only time dependence of the physical variables is a factor elt.



and
divv = -1is (22)
where
I ?eRe e (23)
h? = - iR_. | (2k)

As in the non-rotating case, we have here axial symmetry in that
*

the physical variables are independent of the azimuthal coordinate ®.
However, the azimuthal components of velocity and magnetic field will

be non-zero here in contrast to the non-rotating case in which vcp and

HQP were zero.

From (21) and (22) it follows that Vox = o(1), Vor = 0(1) and

vOcp = 0(8) and hence
(VC+x%) s = 0(82) . (25)

It follows that the coupled equations (21) can be simplified in this

case. In fact, in view of (17) and (25), V oy and v satisfy identically

X

*(r, ¢, x) are the cylindrical coordinates.
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the same system of equations and boundary conditions as in the non-

rotating case. The solution is therefore [9, p. 656]

(1) s, = Axf (k R)
(26)

iy = 1 vs +v°©
(ll) Xo X2 So Xo

where the first term in (ii) is a particular integral of (21) and (22)
and the last term
c
= v - B2R° v 2

v, Blor_(hR) V x hng(hR) Red 27)
is the complementary function. (R, ©, @)* are the spherical polar
coordinates. The function fn(C), defined as

n -iC

da
’a'_g') < } (28)

£ (C) = (- z

| =

represents spherical waves with rapidly diminishing amplitude--the one
with argument { = h R denotes boundary layer effects (viscous) while
the one with argument C=xR essentially represents compressibility

effects (sound waves). The constants A and B are given by

* x =R cos 6, r =R sin 6.
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- i ¥2hf;(h) us
2kfy (h)f, ' (k) + hfy'(h) [kf,'(k) + f1(k)]

(29)

kf,'(k) ug
3[2kf,(h)fy (k) +hf, " (h)ikf; (k) + £, (k)J] °

Now Vocp can be determined in a straight-forward manner from (21). In

fact, exactly similar arguments can be applied while determining

H, and v; to show that only azimuthal components HlCP and vlcp are

affected by rotation. In view of this decoupling of the system of equations,
the rotational effects, which only generate azimuthal components of

velocity and magnetic field, are discussed in Appendix and henceforth,

we would only consider non-rotating case.

First Order Equations

(1) The first order magnetic field Hy satisfies

(o,
1<
o)

VEE]_:‘iS Y4 -

]
|
Q/

™
-

div H; = O,
whose solution is

(30)

c i .
Hy = Hy *gas i
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where the first term is the complementary function

P )
El = c v —2(§gs ) (308,)

and the remaining terms represent a particular integral.

On the other hand, inside the sphere, curl curl H; = 0, div H; = O,
which shows that the sphere acts like an insulator up to this order.

It follows that

Hy = DV [R®F Py (cos 9)] (31)

inside the sphere. The constants C and D in (30a) and (31) are determined
by the requirement that H; is continuous across the surface of the

sphere.

(ii) Finally, the first order flow fields and pressure fields

are given by

i kE-n?
(V=h2)vy = BRe[VHlx ali-rat i l@jEE— ) Vs, , (32)
divvy = - 1s;3

from which it follows that



(V2 +X%) s; = B kz[iz %;22%0 is + : vOXC]* (33)
We have therefore
T Py LI SHAL (54)
2 ox 2 ) k=-h2 ox
where the first term
s& = EjR-Py(cos®) f,(kR) + EoR® -Ps(cosB) fa(kR) (35)

is the complementary function of (33) and the remaining terms are a

particular integral; and

r

_ It 50 2 a2s0} B
i g Ve -Ee i e %t

V[xfo(kR)] + %2 v Slc" (36)

th aSo.+_B_A_

+
k2 (02-k2) dx =  ok2

c
iB _oYo iB k2+h® c .

5 *3x > k2-h2 'ox

Here the first term

*voxc is the x-component of the complementary function XOC given
by (27).
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vi¢ = Filer (nR)Vx - B2R°fo (nR)Y 251+

(37)

v P3(COSG )]

+ Fol Utz (BR)V{R®Ps (cos®)} - 3h7R%F4 (hR)V =2

is the complimentary function of (32) and the remaining terms are a
particular integral. The constants Ey, Ez, F; and Fp are determined

by the requirement that vy = O at R = 1.

The following points are worth noting in our solution:

(a) The terms (like fn(hR)) contalning the coefficients

B, ¥, and Fo represent the compressibility effects on viscous waves.

(b) The terms (like fn(kR)) containing the coefficients A4,

E; and Es represent viscous effects on sound waves.
(c) The terms corresponding to the coefficients C and D

represent the potential part of the magnetic field.

At this point, we would discuss in some more detail the case when

the fluid is incompressible.
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IV. TIncompressible Case

The solution in this case can be obtained from the sbove in the

limit as ¢ ~ed(i.e., k > 0), s » O and ¢s ~ p. (3¢)

| It is clear that we will still have terms (a) and (c) and the

corresponding coefficients will be in the limit:

- 2 ., _ BBi 2 f1(h)
B of_(n > Fa -5 bt n WJ s
3.2
Fo - - BB?;; [4 + £1(h)/fa(n)] (39)
=2
¢ ~ Z2lr(n) - ors(n)] ama D - - ¥

Evidently waves (sound) represented by (b) will no longer be
present and the corresponding terms from (b) can be obtained by the

limiting process (38):

P11 = c¢'81 ~

|

Ie 2 A -
%2- + Big BRf, (hR) - S R%E}]Pl(cose) +
B*L 5 BhZR3f5 (hR) +

+ g-%li }J Ps (cosb)




where

B s 2 Fs
Yy o _ V =20 + v
k2 S /  h2-%Z ax2 2 fo

" 50 i AY (k (R))) -

(40)

_ R2 v P2(COSO)
RS3

 I—

= -1ih®Bf (h) ,

- . _bBn® [3£,2(n) (h)fz(h)]
ia%grﬁj 1 - fO 2 3

£1(h)fs (h)]

_ 28w 2,
5 B B LfO(h) = 5fl(h) + h f2 h
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Next, we can write down the total drag experienced by the sphere*

X = -ma j6<% +o 2 BBy 20
&= e V2Re >~ V@Re
(41)
dug [ (1 31 3BRy |
U & )
-l == |

V2R’ 5PR."

The terms in the curly brackets represent the non-magnetic effect,
while the last term in each square bracket represents a hydromagnetic
effect. The first square bracket gives a frictional force varying as
the velocity: the first term is the Stokes drag for the classical
problem in which the sphere undergoes motion of translation; the second
term is the oscillatory effect in non-magnetic case; the third term

is hydromagnetic, non-viscous, oscillatory effect and the last term

is hydromagnetic viscous effect due to oscillation. The magnetic field

tends to increase the resistance.

The second square bracket gives the correction to the inertia of

the sphere. This amounts to the fraction

% + 9 (/l - _BBJH\)
2/2Re N 10 /

*There will be no contribution of the Maxwell stress to the order
we are interested in, as there are no currents on the surface of the sphere:

d = R [Bo+y XHIl], = 0 .
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of the mass of fluid displaced, instead of'% as in the frinctionless,
non-magnetic case. The effect of the magnetic field is to decrease

the apparent mass of the fluid.

Although the derivations strictly do not hold for this case, we

—

may consider the value R.e ® while at the same time keeping Rs << 1.

We then find

a result which can be checked in a straight-forward manner from the
corresponding hydromagnetic inviscid problem. The non-magnetic part
provides the inertia effect and the magnetic part contributes to the

frictional part of the drag.

When the period %P is made infinitely long, the drag reduces to
the Stokes drag in the classical problem in which the sphere moves
uniformly in a straight line. This is understandable because as
A = 0, the uniform magnetic field H° should also approach zero in

view of

and so the magnetic effect is absent in this limit.
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V. Discussion

First we will discuss the conditions under which our analysis

can be expected to give a close approximation to the true flow.

We have neglected the displacement current in comparison with
the conduction current, which is Justified if

2)\2
?_fz_ «< 1 , (L2)

which follows from the order of magnitudes of the various terms in the
Maxwell equation (6, i) where L is the velocity of light. This is
satisfied by all hydromagnetic flow problems in the laboratory. An
associated condition, that the excess charge may be neglected, is also

satisfied if (42) holds.

As in the classical problem, the convective terms have been neglected.

This is Justified if¥*

o << a (43)

(where o is the amplitude of the oscillation and a is the radius of the

sphere), provided

*This condition justifies the omission of convective terms both
in zercoth order and first order approximations as can be seen by the
orders of magnitudes of various terms involved in the momentum equation.



R o= A o() , (hh)

e AV

2g - p in the Incompres-

which follows from (15), remembering that s = 0O, c
sible case. For common liquids in hydromagnetic experiments, v = 0(107°)

in m.k.s. units and hence we must make

a® » = 0(10°%) . (hka)

Next, in the zeroth order approximation of the momentum equation,

we neglected the Lorentz force J X B = B curl H X H. This is Jjustified if

5O
B - Hobeps = 0(1) (45)
and
R, = a2 A po << 1 . (46)

In the case of liquid Sodium and Mercury, for example, po = O(1)
and so (46) follows in view of (kha). Condition (45) implies that
magnetic pressure 1s at most comparable to dynamic pressure, which
holds for weak field, say 50 gauss or less. In short, our analysis
in valid for the oscillatiocns of small globules in the presence of

weak magnetic fields.

The following table gives some typical values of these parameters

for Mercury, Liquid Sodium and Saturated Salt Water at 25°C when
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= .05 cm, B = 25 gauss, A = 25.

. Liquid @ Saturated Mercury
 Sodium salt
: . Water At
i 25 ¢
, - .4-,__.—-.:‘ e e e g - e e e eae
R, 3 ! 6 60
B 25 I 25 ; 2
: | :
R 11x10° | 2x107%° g5 x 10°°
- 5 ’I :

Finally, to study the nature and properties of the solution, it

will be convenient to introduce the stream functions & and§

1 3% 1 3F 1a§

3
(where Ve T T a e VT T3 Hx =- I35 H =1 §) For the sake

of brevity, we write the results here in a shorter form:

{' = eit sinze‘;ré%_) + aE(Re R “(l"'l vE? (R- ]

—
v

(%7)

+ eiJG singeitaslgRe) + a4lg1§e) + aS(Re,R) e—(l+i)' ;ZE(R-l):if

+ Tt sinzecosgei:asl({Re) + a7f({§e) + aB(Re’R) e'(l‘*'i)»\/ﬁe;E(R-l)

(where the terms under the bar represent the non-magnetic part);

*The wave-like term exp [-(1+i)/Ro/2(R-1)] comes from the functions
£ (bR) defined by (28).
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3 - eitcosesinae[bl(Re) + .132_1(226;) + bs(Re,R) e (l+i)«/§g;2(R-l):i (48)

As Re"mﬂil"'-%

-2 @ .32 o
a4 EOIBR 2’ %6 ﬂlBRma
(L9)
.3 < ~1ig @
a7 LLlBRma’bl L Bna
- .2 g %
and bz 20 'm &
If §s is the corresponding function for the magnetic lines of force
inside the sphere,
. Lo s 28 ol
§s 53 By R cos® sin“6 e s (50)

which is current-free and hence up to this approximation, the sphere

acts like an insulator.

From (47) and (48) it follows that there are three types of terms

in the solution:

(1) Wave-like (corresponding to the appearance of a boundary
layer), effective in a small distance from the surface of the sphere

and behaving like exp [-(1+i)/R./2(R-1)]. The nature of boundary
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layer solution is essentially the same in hydromsgnetics as in a
non-magnetic case. The term exp [-(1+i)v§;7§(R-l)] represents a wave
of vibrations propagated from the boundary of the sphere with the
velocity 45752, but with rapidly diminishing amplitude, the falling
off within a wave length being in the ratio e-2n, or 1/555. The
linear magnitude v§7§;, important in all problems of oscillations in
incompressible viscous fluids, indicates the extent to which the effects
of viscosity penetrate into the fluid. In the case of Mercury its

1

value is .018 PE cms, where P is the period of oscillation in seconds.
1

For liquid Sodium, the corresponding value is .079 P*.

5in®0  cosOsinZ6Y

(2) Irrotational R = ) » and

5in20  sin®0cos®® sin®6cos36 . 28
, sin“Bcosb ).

(3) Rotational = 5 ’ e

In the non-magnetic case, the motion in the flow field is essentially
irrotational at large distances, and it is an interesting result that

the magnetic field generates vorticity.

cosPsin®0

In the case of a magnetic field, the term 55

is current free,

while the term cos®sin®® is responsible for currents at large distances.

From (49) it follows that for large distances, the disturbance
in the present problem differs only in amplitude and phase from the
one generated by the oscillation of a sphere in a frictionless fluid

in the presence of a magnetic field.
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The diagrams 1, 2 and 3 illustrate the effects of various parameters
on the flow fields. Figure 1 shows how the drag on the sphere varies as
it oscillates. It also shows the influence of conductivity and viscosity
on the drag. Figure 2 shows the effect of Reynolds number Re on
magnetic lines of force. The viscosity tends to contract the lines of
force. On the other hand, Figure 3 shows the stretching effect of the
magnetic field on the stream lines (compare Figure 3 (a) and (b);

(¢) and (d)). Viscosity also tends to produce similar effects on the

flow (compare Figure 3 (a) and (c); (b) and (d)).
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Appendix

As pointed out earlier, the only effect of rotation in this problem
is that azimuthal components of v and H are affected in that they are
non-zerc here in contrast to the non-rotating case in which vCP and H

are zero.

To determine Vopr We use (21) which gives

TP F 1393 1 ]
; + — +==— - =+ 1n? =
(o 32 "ror 1@ h J VO@ 8 Re Vor (a1)
and the boundary conditions are
Voo = O at R =1 and at infinity. (a2)
The solution is (using (26))
8 i Os
= + =, =0 _
Vo By x r f> (bR) E?¥§2 %2 oF
(A3)
5138 2
-=5—3Bh xr £; (WR)

where the first term is the complementary function and the remaining terms
are a particular integral. The constant B; can be chosen in such a

way that the boundary condition vocp = Q0at R =1 1is satisfied.
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Next, le can be determined by

¥ F , 19 1] B op

et tiw ol T (ak)
while inside the sphere

*F F L 129 1 N

[&5+E+}’6E'§2]Hkp =0 (45)

and we require the continuity of H;ltP across the surface of the sphere.

The solution is

1 1
_ P1(cosh) P3(cos8) 8Rai Fsq
Hi, = B2 E s Re kﬂhg-kzi xor
-
31253 2 §2+xa—x+ﬂrfl (hR) 4 (86)

+E-gla [x r f> (nR)] ,

and inside the sphere
1 1
le = (3 R - Pi(cosB®) + Cs R3 « P3(cosh) . (AT)
The first two terms in (A6) are the complementary function and the remaining

terms are a particular integral. The constants By, Bz, C; and Cy are

determined by the requirement that le is continuous at R = 1.
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Tinally, Vlcp is determined by

1o 1 2}, -
+rar’r2+h 3, = BRevdP+ 6Rev1r (A8)

and the boundary conditions Vlcp = 0 at R =1 and at infinity. (A9)

The solution is

Vi, = GlRZ-P;(cosG)fg(hR) + GoR*%. Pi(cose)f4(hR)+

GR[ [4hZ-2KZ %0, _x  Psg
2k2 L(hﬁg-k2 )= or h2-k2 Bxar

+

N 3®so < dfo(kR)
(h2-k2 )2 orox2 ~or

(A10)

i B} s e from

c
2 2 i aSl I
£,(BR) + h%x fZ(hR)} * k2 (h=-k=) or

2h2 (h® Fy - 4F2) x v £1 (WR) +

B4Bi
+%—2F2 x r f3 (hR) (-4x® + 51«2)] -——l%xr f1 (bR)
where the first two terms are the complementary function and the
remaining are a particular integral. The constants G; and Go are

determined by the requirement that VJTP =0at R =1.
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It is clear from the above solution that there will be no
contribution of Maxwell and Viscous stresses (produced due to rotation)

on the drag——a result in agreement with our previous conclusions

(see Singh, 196k [12]).

Since the wave-like terms fn(Q) are damped heavily, it follows
that in non-rotating compressible case, the flow will be essentially
current free and irrotational at large distances. Our solution sbove
shows that the effect of rotation will be to produce vorticity and

current which again agrees with our conclusions in [12].

Concluding, it should be noted that the nature of wave propagatim

remains essentially similar in both rotating and non-rotating cases.
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